Show that the sum of $(m+n)^{ th }$ and $(m-n)^{ th }$ terms of an $A.P.$ is equal to twice the $m^{\text {th }}$ term.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a$ and $d$ be the first term and the common difference of the $A.P.$ respectively. It is known that the $k^{th}$ term of an $A.P.$ is given by

$a_{k}=a+(k-1) d$

$\therefore a_{m+n}=a+(m+n-1) d$

$a_{m-n}=a+(m-n-1) d$

$a_{m}=a+(m-1) d$

$\therefore a_{m+n}+a_{m-n}=a+(m+n-1) d+a+(m-n-1) d$

$=2 a+(m+n-1+m-n-1) d$

$=2 a+(2 m-2) d$

$=2 a+2(m-1) d$

$=2[a+(m-1) d]$

$=2 a_{m}$

Thus, the sum of $(m+n)^{t h}$ and $(m-n)^{t h}$ terms of an $A.P.$ is equal to twice the $m^{\text {th }}$ term.

Similar Questions

The sum of numbers from $250$ to $1000$ which are divisible by $3$ is

If $a,b,c$ are in $A.P.$, then $\frac{1}{{\sqrt a + \sqrt b }},\,\frac{1}{{\sqrt a + \sqrt c }},$ $\frac{1}{{\sqrt b + \sqrt c }}$ are in

If the numbers $a,\;b,\;c,\;d,\;e$ form an $A.P.$, then the value of $a - 4b + 6c - 4d + e$ is

The ratio of the sums of $m$ and $n$ terms of an $A.P.$ is $m^{2}: n^{2} .$ Show that the ratio of $m^{ th }$ and $n^{ th }$ term is $(2 m-1):(2 n-1)$

Let the sequence $a_{n}$ be defined as follows:

${a_1} = 1,{a_n} = {a_{n - 1}} + 2$ for $n\, \ge \,2$

Find first five terms and write corresponding series.