The equation of a wave on a string of linear mass density $0.04\, kgm^{-1}$ is given by : $y = 0.02\,\left( m \right)\,\sin \,\left[ {2\pi \left( {\frac{t}{{0.04\left( s \right)}} - \frac{x}{{0.50\left( m \right)}}} \right)} \right]$. The tension in the string is ..... $N$
$4.0$
$12.5$
$0.5$
$6.25$
A sound is produced by plucking a string in a musical instrument, then
A horizontal stretched string, fixed at two ends, is vibrating in its fifth harmonic according to the equation, $y(x$, $t )=(0.01 \ m ) \sin \left[\left(62.8 \ m ^{-1}\right) x \right] \cos \left[\left(628 s ^{-1}\right) t \right]$. Assuming $\pi=3.14$, the correct statement$(s)$ is (are) :
$(A)$ The number of nodes is $5$ .
$(B)$ The length of the string is $0.25 \ m$.
$(C)$ The maximum displacement of the midpoint of the string its equilibrium position is $0.01 \ m$.
$(D)$ The fundamental frequency is $100 \ Hz$.
$Assertion :$ Two waves moving in a uniform string having uniform tension cannot have different velocities.
$Reason :$ Elastic and inertial properties of string are same for all waves in same string. Moreover speed of wave in a string depends on its elastic and inertial properties only.
A heavy ball of mass $M$ is suspended from the ceiling of car by a light string of mass $m (m << M)$. When the car is at rest, the speed of transverse waves in the string is $60\, ms^{-1}$. When the car has acceleration $a$ , the wave-speed increases to $60.5\, ms^{-1}$. The value of $a$ , in terms of gravitational acceleration $g$ is closest to
Write equation of transverse wave speed for stretched string.