A conducting bar $PQ$ of length $l$ carrying current $I$ is suspended from a rigid support as shown in figure. A uniform magnetic field $B$ perpendicular to $PQ$ and directed away from the reader (inside the plane) is applied. If the mass of the bar is $M$ the tension in each string is
$Mg/2$
$(Mg + IBL)/2$
$(Mg - IBL)/2$
$Mg - IBL/2$
A current carrying closed loop in the form of a right angle isosceles triangle $ABC$ is placed in a uniform magnetic field acting along $AB.$ If the magnetic force on the arm $BC$ is $\vec F,$ the force on the arm $AC$ is
Two parallel wires of length $9\, m$ each are separated by a distance $0.15\, m$. If they carry equal currents in the same direction and exerts a total force of $30 \times 10^{-7} \,N$ on each other, then the value of current must be........$amp$
There long straight wires $A$, $B$ and $C$ are carrying current as shown figure. Then the resultant force on $B$ is directed .....
A conducting circular loop of radius $r$ carries a constant current $i$. It is placed in a uniform magnetic field $\overrightarrow B $, such that $\overrightarrow B $ is perpendicular to the plane of the loop. The magnetic force acting on the loop is
A uniform magnetic field of $1.5\; T$ exists in a cylindrical region of radius $10.0\; cm$, its direction parallel to the axis along east to west. A wire carrying current of $7.0\; A$ in the north to south direction passes through this region. What is the magnitude and direction of the force on the wire if,
$(a)$ the wire intersects the axis,
$(b)$ the wire is turned from $N-S$ to northeast-northwest direction,
$(c)$ the wire in the $N-S$ direction is lowered from the axis by a distance of $6.0 \;cm?$