A charged ball $B$ hangs from a silk thread $S$, which makes an angle $\theta $ with a large charged conducting sheet $P$, as shown in the figure. The surface charge density $\sigma $ of the sheet is proportional to
$\sin \theta $
$\tan \theta $
$\cos \theta $
$\cot \theta $
Mention characteristics of electric field.
Two identical non-conducting solid spheres of same mass and charge are suspended in air from a common point by two non-conducting, massless strings of same length. At equilibrium, the angle between the strings is $\alpha$. The spheres are now immersed in a dielectric liquid of density $800 kg m ^{-3}$ and dielectric constant $21$ . If the angle between the strings remains the same after the immersion, then
$(A)$ electric force between the spheres remains unchanged
$(B)$ electric force between the spheres reduces
$(C)$ mass density of the spheres is $840 kg m ^{-3}$
$(D)$ the tension in the strings holding the spheres remains unchanged
Find ratio of electric field at point $A$ and $B.$ Infinitely long uniformly charged wire with linear charge density $\lambda$ is kept along $z-$ axis
Find the electric field at point $P$ (as shown in figure) on the perpendicular bisector of a uniformly charged thin wire of length $L$ carrying a charge $Q.$ The distance of the point $P$ from the centre of the rod is $a=\frac{\sqrt{3}}{2} L$.
Whose result the whole electrostatic is ?