A body of mass M is kept on a rough horizontal surface (friction coefficient $\mu $). A person is trying to pull the body by applying a horizontal force but the body is not moving. The force by the surface on the body is $F$, where
$F = Mg$
$F = \mu Mgf$
$Mg \le F \le Mg\sqrt {1 + {\mu ^2}} $
$Mg \ge F \ge Mg\sqrt {1 + {\mu ^2}} $
A block of mass $m$ is stationary on a rough plane of mass $M$ inclined at an angle $\theta$ to the horizontal, while the whole set up is accelerating upwards at an acceleration $\alpha$. If the coefficient of friction between the block and the plane is $\mu$, then the force that the plane exerts on the block is
A body of weight $50 \,N$ placed on a horizontal surface is just moved by a force of $28.2\, N$. The frictional force and the normal reaction are
A block of mass $M$ is being pulled along rough horizontal surface. The coefficient of friction between the block and the surface is $\mu $. If another block of mass $M/2$ is placed on the block and it is again pulled on the surface, the coefficient of friction between the block and the surface will be
A block of $1\, kg$ is stopped against a wall by applying a force $F$ perpendicular to the wall. If $\mu = 0.2$ then minimum value of $F$ will be ....... $N.$
When a body slides down from rest along a smooth inclined plane making an angle of $45^o$ with the horizontal, it takes time $T$. When the same body slides down from rest along a rough inclined plane making the same angle and through the same distance, it is seen to take time $pT$, where $p$ is some number greater than $1$. Calculate the coefficient of friction between the body and the rough plane.