A block of mass $1\,kg$ is pushed up a surface inclined to horizontal at an angle of $30^o$ by a force of $10\,N$ parallel to the inclined surface (figure). The coefficient of friction between block and the incline is $0.1$. If the block is pushed up by $10\,m$ along the inclined calculate
$(a)$ work done against gravity
$(b)$ work done against force of friction
$(c)$ increases in potential energy
$(d)$ increases in kinetic energy
$(e)$ work done by applied force
$m=1 \mathrm{~kg}, \theta=30^{\circ}, \mathrm{F}=10 \mathrm{~N}, \mu=0.1, d=10 \mathrm{~m}$
$(a)$Work done against gravity,
$\mathrm{W}_{1} =m g \times \text { Vertical distance travelled }$
$=m g \times d(\sin \theta)=(m g d) \sin \theta$
$=1 \times 10 \times 10 \sin 30^{\circ}=50 \mathrm{~J} \quad\left(\because g \leq 10 \mathrm{~m} / \mathrm{s}^{2}\right)$
$(b)$ Work done against friction,
$\mathrm{W}_{2} =f \times d=\mu \mathrm{N} \times \mathrm{s}=\mu \mathrm{mg} \cos \theta \times d$
$=0.1 \times 1 \times 10 \times \cos 30^{\circ} \times 10$
$=10 \times 0.866=8.66 \mathrm{~J}$
$\text { (c) Increase in } \mathrm{PE}=m g h=m g(d \sin \theta)$
$\Delta \mathrm{U} =1 \times 10 \times 10 \times \sin 30^{\circ}$
$=100 \times \frac{1}{2}=50 \mathrm{~J}$
$(e)$ Work done by applied force,
$\mathrm{W} =\mathrm{F} d$
$=(10)(10)=100 \mathrm{~J}$
$(d)$ By work-energy theorem, we know that work done by all the forces = change in KE
$(\mathrm{W})=\Delta \mathrm{K}$
$\Delta \mathrm{K} =\mathrm{W}-\mathrm{W}_{2}-\Delta \mathrm{U}$
$=100-8.66-50$
$=41.34 \mathrm{~J}$
Two bodies with masses $M_1$ and $M_2$ have equal kinetic energies. If $p_1$ and $p_2$ are their respective momenta, then $p_1/p_2$ is equal to
Two identical particles are moving with same velocity $v$ as shown in figure. If the collision is completely inelastic then
A particle moves along $x$-axis from $x=0$ to $x=5$ metre under the influence of a force $F=7-2 x+3 x^2$. The work done in the process is .............
A cord is used to lower vertically a block of mass $M$ by a distance $d$ with constant downward acceleration $\frac{g}{4}$. Work done by the cord on the block is
$A$ ball is dropped from height $5m$. The time after which ball stops rebounding if coefficient of restitution between ball and ground $e = 1/2$, is .................. $\mathrm{sec}$