A $20 \,g$ bullet whose specific heat is $5000 \,J kg ^{\circ} C$ and moving at $2000 \,m / s$ plunges into a $1.0 \,kg$ block of wax whose specific heat is $3000 \,J kg ^{\circ} C$. Both bullet and wax are at $25^{\circ} C$ and assume that $(i)$ the bullet comes to rest in the wax and $(ii)$ all its kinetic energy goes into heating the wax. Thermal temperature of the wax $\left(\right.$ in $\left.^{\circ} C \right)$ is close to
$28.1$
$31.5$
$37.9$
$42.1$
In an experiment a sphere of aluminium of mass $0.20\, kg$ is heated upto $150\,^oC$. Immediately, it is put into water of volume $150\, cc$ at $27\,^oC$ kept in a calorimeter of water equivalent to $0.025\, kg$. Final temperature of the system is $40\,^oC$. The specific heat of aluminium is ............ $J/kg\,-\,^oC$ (take $4.2\, Joule= 1\, calorie$)
Which of the following material is used to make calorimeter?
$100\,g$ of water is supercooled to $-\,10\,^oC$. At this point, due to some disturbance mechanised or otherwise some of it suddenly freezes to ice. What will be the temperature of the resultant mixture and how much mass would freeze ? $[S_W = 1\,cal\,g^{-1}\,^oC^{-1}$ and ${L^W}_{{\text{fussion}}}$ $= 80\,cal\,g^{-1}]$
$1\ gm$ of ice at $0^o C$ is mixed with $1gm$ of water at $100^o C$ the resulting temperature will be .......... $^oC$
$500\, g$ of water and $100\, g$ of ice at $0\,^oC$ are in a calorimeter whose water equivalent is $40\, g$. $10\, g$ of steam at $100\,^oC$ is added to it. Then water in the calorimeter is ....... $g$ (Latent heat of ice $\,= 80\, cal/g$, Latent heat of steam $\,= 540\, cal/ g$)