In an experiment a sphere of aluminium of mass $0.20\, kg$ is heated upto $150\,^oC$. Immediately, it is put into water of volume $150\, cc$ at $27\,^oC$ kept in a calorimeter of water equivalent to $0.025\, kg$. Final temperature of the system is $40\,^oC$. The specific heat of aluminium is ............ $J/kg\,-\,^oC$ (take $4.2\, Joule= 1\, calorie$)

  • [JEE MAIN 2017]
  • A

    $378$

  • B

    $315$

  • C

    $476$

  • D

    $434$

Similar Questions

Water is used to cool radiators of engines in car because

A water cooler of storage capacity $120$ litres can cool water at a constant rate of $P$ watts. In a closed circulation system (as shown schematically in the figure), tr e wat'r from the cooler is used to cool an external device that generates constantly $3 \mathrm{~kW}$ of heat (thermal load). The temperature of water fed into the device cannot exceed $30^{\circ} \mathrm{C}$ and the e.tire stored $120$ litres of water is initially cooled to $10^{\circ} \mathrm{C}$. The entire system is thermally insulat $\mathrm{d}$. The minimum value of $P$ (in watts) for which the device can be operated for $3$ hours is

(Specific heat of water is $4.2 \mathrm{~kJ}^{-1} \mathrm{~kg}^{-1}$ and the density of water is $10.$) $0 \mathrm{k}^2 \mathrm{~m}^{-3}$ )

  • [IIT 2016]

Due to cold weather a $1\, {m}$ water pipe of cross-sectional area $1\, {cm}^{2}$ is filled with ice at $-10^{\circ} {C}$. Resistive heating is used to melt the ice. Current of $0.5\, {A}$ is passed through $4\, {k} \Omega$ resistance. Assuming that all the heat produced is used for melting, what is the minimum time required ? (In ${s}$)

(Given latent heat of fusion for water/ice $=3.33 \times 10^{5}\, {J} {kg}^{-1}$, specific heat of ice $=2 \times 10^{3}\, {J}$ ${kg}^{-1}$ and density of ice $=10^{3}\, {kg} / {m}^{3}$

  • [JEE MAIN 2021]

Two rigid boxes containing different ideal gases are placed on a table. Box A contains one mole of nitrogen at temperature $T_0$, while Box contains one mole of helium at temperature $(7/3)$ $T_0$ The boxes are then put into thermal contact with each other, and heat flows between them until the gases reach a common final temperature (ignore the heat capacity of boxes). Then, the final temperature of the gases,$T_f$  in terms of $T_0$ is

  • [AIEEE 2006]

Thermocouple is an arrange ment of two different metal to :-