$500\, g$ of water and $100\, g$ of ice at $0\,^oC$ are in a calorimeter whose water equivalent is $40\, g$. $10\, g$ of steam at $100\,^oC$ is added to it. Then water in the calorimeter is ....... $g$ (Latent heat of ice $\,= 80\, cal/g$, Latent heat of steam $\,= 540\, cal/ g$)
$580$
$590$
$600$
$610$
A block of mass $2.5\,\, kg$ is heated to temperature of $500^o C$ and placed on a large ice block. ......... $kg$ is the maximum amount of ice that can melt (approx.). Specific heat for the body $= 0.1 Cal/gm^o C$.
Calculate the amount of heat (in calories) required to convert $5\,gm$ of ice at $0°C$ to steam at $100°C$
A refrigerator converts $500\,g$ of water at $25\,^oC$ into ice at $-10\,^oC$ in $3\,hours\,40\,minutes$ . The quantity of heat removed per minute is ........ $cal/\min$
(Sp. heat of water $1\,cal/gm$, Specific heat of ice $= 0.5\,cal/g\,^oC$ , letent heat of fusion $= 80\,cal/g$ )
A piece of ice (heat capacity $=$ $2100$ $J kg^{-1}$ $^o C^{-1}$ and latent heat $=$ $3.36$ $×$ $10^5$ $J kg^{-1}$) of mass $m$ grams is at $-5^o C$ at atmospheric pressure. It is given $420$ $J$ of heat so that the ice starts melting. Finally when the ice-water mixture is in equilibrium, it is found that $1$ $gm$ of ice has melted. Assuming there is no other heat exchange in the process, the value of $m$ is ...... $gm$
An experiment takes $10\, minutes$ to raise the temperature of water in a container from $0\,^oC$ to $100\,^oC$ and another $55\, minutes$ to convert it totally into steam by a heater supplying heat at a uniform rate . Neglecting the specific heat of the container and taking specific heat of water to be $1\, cal / g\,^oC$, the heat of vapourization according to this experiment will come out to be ........ $cal/g$