एक $NCC$ की परेड $9\,km / h$ की एकसमान चाल से किसी आम के पेड के नीचे से गुजर रही है, जिस पर एक बंदर $19.6\,m$ की ऊँचाई पर बैठा है। किसी क्षण विशेष पर, बंदर एक आम गिराता है। यह कैडेट (छात्र) उस आम को प्राप्त करेगा जिसकी दूरी गिराने के समय पर पेड से $..........\,m$ निम्न के बराबर है :(दिया है, $g =9.8\,m / s ^2$ )
$5$
$10$
$19.8$
$24.5$
यदि सदिश $\overrightarrow{ A }=\cos \omega \hat{ t }+\sin \omega \hat{ j }$ तथा सदिश $\overrightarrow{ B }=\cos \frac{\omega t }{2} \hat{ i }+\sin \frac{\omega t }{2} \hat{ j }$ समय के फलन है, तो $t$ का मान क्या होगा जिस पर ये सदिश परस्पर लंबकोणि होगी ?
किसी दिक्स्थान पर एक स्वेच्छ गति के लिए निम्नलिखित संबंधों में से कौन-सा सत्य है ?
$(a)$ $v _{\text {औसत }}=(1 / 2)\left( v \left(t_{1}\right)+ v \left(t_{2}\right)\right)$
$(b)$ $v _{\text {औमन }}=\left[ r \left(t_{2}\right)- r \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
$(c)$ $v (t)= v (0)+ a t$
$(d)$ $r (t)= r (0)+ v (0) t+(1 / 2) a t^{2}$
$(e)$ $a _{\text {औमन }}=\left[ v \left(t_{2}\right)- v \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
यहाँ ' औसत' का आशय समय अंतराल $t_{2}$ व $t_{1}$ से संबांधित भौतिक राशि के औसत मान से है ।