A $G.P.$ consists of an even number of terms. If the sum of all the terms is $5$ times the sum of terms occupying odd places, then find its common ratio.
Let the $G.P.$ be $T_{1}, T_{2}, T_{3}, T_{4} \ldots . T_{2 n}$
Number of terms $=2 n$
According to the given condition,
$T_{1}+T_{2}+T_{3}+\ldots .+T_{2 n}=5\left[T_{1}+T_{3}+\ldots .+T_{2 n-1}\right]$
$\Rightarrow T_{1}+T_{2}+T_{3}+\ldots .+T_{2 n}-5\left[T_{1}+T_{3}+\ldots . .+T_{2 n-1}\right]=0$
$\Rightarrow T_{2}+T_{4}+\ldots .+T_{2 n}=4\left[T_{1}+T_{3}+\ldots . .+T_{2 n-1}\right]$
Let the $G.P.$ be $a, a r, a r^{2}, a r^{3} \dots$
$\therefore \frac{\operatorname{ar}\left(r^{n}-1\right)}{r-1}=\frac{4 \times a\left(r^{n}-1\right)}{r-1}$
$\Rightarrow a r=4 a$
$\Rightarrow r=4$
Thus, the common ratio of the $G.P.$ is $4$
How many terms of $G.P.$ $3,3^{2}, 3^{3}$... are needed to give the sum $120 ?$
Insert two numbers between $3$ and $81$ so that the resulting sequence is $G.P.$
if $x = \,\frac{4}{3}\, - \,\frac{{4x}}{9}\, + \,\,\frac{{4{x^2}}}{{27}}\, - \,\,.....\,\infty $ , then $x$ is equal to
The sum of infinite terms of a $G.P.$ is $x$ and on squaring the each term of it, the sum will be $y$, then the common ratio of this series is
If ${x_r} = \cos (\pi /{3^r}) - i\sin (\pi /{3^r}),$ (where $i = \sqrt{-1}),$ then value of $x_1.x_2.x_3......\infty ,$ is :-