प्राचल $ k $ के वास्तविक मानों की संख्या क्या होगी, जिसके लिए ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ का केवल एक हल हो, जबकि गुणांक वास्तविक हो
$2$
$1$
$4$
इनमें से कोई नहीं
यदि $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2$ हो, तब $A $ का मान होगा
माना $\sum_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c\ $है, जहाँ $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$ तथा $\mathrm{e}=\sum_{\mathrm{n}=0}^{\infty} \frac{1}{\mathrm{n} !}$ है तो $\mathrm{a}^2-\mathrm{b}+\mathrm{c}$ बराबर है
यदि ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0$ हो, तब $x$ का मान होगा
संख्या $15^2 \times 5^{18}$ को यदि आधार $(base)$ $10$ में लिखा जाए, तब इसके अंकों का योग $S$ है। तब
यदि ${\log _{10}}3 = 0.477$, तो ${3^{40}}$ में अंको की संख्या है