${\log _2}(x + 5) = 6 - x$ के हलों की संख्या है
$2$
$0$
$3$
इनमें से कोई नहीं
$\left(\left(\log _2 9\right)^2\right)^{\frac{1}{\log _2\left(\log _2 9\right.}} \times(\sqrt{7})^{\frac{1}{\log _4 7}}$ का मान है ..................|
योगफल $\sum_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}$ बराबर है:
माना कि $a=3 \sqrt{2}$ और $b=\frac{1}{5^{1 / 6} \sqrt{6}}$ हैं। यदि $x, y \in R$ इस प्रकार हैं कि
$3 x+2 y=\log _a(18)^{\frac{5}{4}} \quad \text { और }$
$2 x-y=\log _b(\sqrt{1080}),$
तब $4 x+5 y$ बराबर. . . . .है।
${\log _3}4{\log _4}5{\log _5}6{\log _6}7{\log _7}8{\log _8}9$ का मान है [
संख्या ${\log _2}7$है