$\left( {\left( {\begin{array}{*{20}{c}}
{21}\\
1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
1
\end{array}} \right)} \right) + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
2
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
2
\end{array}} \right)} \right)$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
3
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
3
\end{array}} \right)} \right) + \;.\;.\;.$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
{10}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
{10}
\end{array}} \right)} \right) = $
${2^{20}} - {2^{10}}$
${2^{21}} - {2^{11}}$
${2^{21}} - {2^{10}}$
${2^{20}} - {2^9}$
જો ${C_0},{C_1},{C_2},.......,{C_n}$ એ દ્રીપદી સહગુણક છે , તો $2.{C_1} + {2^3}.{C_3} + {2^5}.{C_5} + ....$ = . . .
If $\sum\limits_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum\limits_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$ જ્યાં $\alpha \in R$, હોય, તો $16 \alpha$ નું મૂલ્ય...........છે
શ્રેણી $aC_0 + (a + b)C_1 + (a + 2b)C_2 + ..... + (a + nb)C_n$ નો સરવાળો મેળવો
જ્યાં $Cr's$ એ $(1 + x)^n, n \in N$ ના વિસ્તરણમાં સહગુણક દર્શાવે છે
જો $\sum\limits_{r = 0}^{25} {\left\{ {^{50}{C_r}.{\,^{50 - r}}{C_{25 - r}}} \right\} = K\left( {^{50}{C_{25}}} \right)} $ હોય તો $K$ ની કિમત મેળવો.
જો ${\left( {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} \right)^n},x \ne 0$ ના વિસ્તરણમાં પદોની સંખ્યા $28$ છે,તો આ વિસ્તરણમાંના બધાજ પદોના સહગુણકોનો સરવાળો . . . . છે.