જો વર્તૂળ $x^2 + y^2 + 2gx + 2fy + c = 0$ પરના કોઈપણ બિંદુ $P$ માંથી વર્તૂળ $x^2 +y^2 + 2gx + 2fy + c sin^2 \alpha + (g^2 + f^2) cos^2\alpha = 0$ પર સ્પર્શકો દોરવામાં આવે, તો સ્પર્શકો વચ્ચેનો ખૂણો :
$\alpha$
$2\alpha$
$\alpha /2$
એકપણ નહી.
જો વર્તૂળ $S = x^2 + y^2 + 2gx + 2fy + c = 0$ દ્વારા બિંદુ $P(x_1, y_1) $ આગળ બનતો ખૂણો $\theta$ હોય, તો....
વર્તૂળ $x^2 + y^2 = 4$ નો બિંદુ $P\,\,\left( {\sqrt 3 ,\,\,1} \right)$આગળ $PT$ સ્પર્શક દોર્યો. $PT$ ને લંબ સુરેખા $L$ એ વર્તૂળ $(x - 3)^2+ y^2 = 1$ નો સ્પર્શક છે.$L$ નું શક્ય સમીકરણ ...
ધારો કે રેખાઓ $y+2 x=\sqrt{11}+7 \sqrt{7}$ અને $2 y + x =2 \sqrt{11}+6 \sqrt{7}$ એ વર્તુળ $C:(x-h)^{2}+(y-k)^{2}=r^{2}$. ના અભિલંબ છે જો રેખા $\sqrt{11} y -3 x =\frac{5 \sqrt{77}}{3}+11$ એ વર્તુળ $C$, નો સ્પર્શક હોય તો $(5 h-8 k)^{2}+5 r^{2}$ નું મૂલ્ય ...................છે
ઉગમબિદુમાંથી વર્તૂળ ${(x - 1)^2} + {y^2} = 1$ પર જીવા દોરવાંમા આવે છે. તો આ જીવાના મધ્યબિંદુના બિંદુપથનું સમીકરણ મેળવો.
જો ધન $x-$અક્ષ તથા વર્તુળ $(x-2)^{2}+(y-3)^{2}=25$ ના $(5, 7)$ બિંદુએ અભિલંબ અને સ્પર્શકથી બનતા ત્રિકોણનું ક્ષેત્રફળ $A$ હોય, તો $24A =........ .$