જો સુરેખા $y\,\, = \,\,4x\,\, + \;\,c$ એ ઉપવલય $\frac{{{x^2}}}{8}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$ નો સ્પર્શક હોય, તો $c\,\, = \,...........$
$\pm 4$
$\pm 6$
$\pm 1$
$ \pm \,\,\sqrt {132} $
ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ ની નાભિઓ અને અતિવલય
$\frac{{{x^2}}}{{144}}\,\, - \,\,\frac{{{y^2}}}{{81}}\,\, = \,\,\frac{1}{{25}}$ ની નાભીઓ સમાન હોય તો ${b^2}$ નું મૂલ્ય:
અનુપ્રસ્થ અક્ષોની લંબાઈ $2\ sin\ \theta$ ધરાવતો અતિવલય, એ ઉપવલય $3x^2 + 4y^2 = 12$ સાથે સમનાભિ હોય, તો તેનું સમીકરણ.....
સમીકરણ $ \frac{{{x^2}}}{{10\,\, - \,\,a}}\,\, + \,\,\frac{{{y^2}}}{{4\,\, - \,\,a}}\,\, = \,\,1\,$ એ ઉપવલય છે તેમ ક્યારે દર્શાવે:
જે ઉપવલયની નાભિઓ $(-1, 0)$ અને $(7, 0)$ અને ઉત્કેન્દ્રતા $1/2$ હોય, તે ઉપવલય પરના બિંદુનું પ્રચલ સ્વરૂપ :
ઉપવલય $x^{2} + 2y^{2} = 2$ ના કોઈ પણ સ્પર્શકનો અક્ષો વચ્ચે કપાયેલ અંત:ખંડના મધ્યબિંદુનો બિંદુપથ મેળવો.