ઉપવલય $3x^{2} + 4y^{2} = 12$ ના સ્પર્શકોનું સમીકરણ શોધો કે જે રેખા $y + 2x = 4$ ને લંબ હોય.
$x - 2y \pm 4 = 0$
$2x + 2y \pm 7 = 0$
$3x + 2y + 4 = 0$
આપેલ પૈકી એક પણ નહિ
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ શિરોબિંદુઓ $(\pm 5,\,0),$ નાભિઓ $(\pm 4,\,0)$
જો $a$ અને $c$ એ વાસ્તવિક સંખ્યાઓ છે અને ઉપવલય $\frac{{{x^2}}}{{4{c^2}}} + \frac{{{y^2}}}{{{c^2}}} = 1$ ના વર્તુળ $x^2 + y^2 = 9a^2$ માં ચાર ભિન્ન બિંદુઓ સામાન્ય હોય તો ....
ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ના બિંદુ $P$ આગળ દોરેલો સ્પર્શક યામાક્ષોને $A$ અને $B$ બિંદુઓ આગળ છેદે છે. તો $\Delta OAB$ નું ન્યૂનત્તમ ક્ષેત્રફળ મેળવો.
ધારો કે $A(\alpha, 0)$ અને $B(0, \beta)$ એ, રેખા $5 x+7 y=50$ પરના બિંદુઓ છે. ધારો કે બિંદુ $P$, રેખાખંડ $A B$ નું $7: 3$ ગુણોત્તરમાં અંતઃવિભાજન કરે છે. ધારો કે ઉપવલય $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ ની એક નિયામિકા $3 x-25=0$ છે અને અનુરૂપ નાભિ $S$ છે. જો $S$ માંથી $x$-અક્ષ પરનો લંબ $P$ માંથી પસાર થતો હોય, તો $E$ ના નાભિલંબની લંબાઇ .......................... છે.
જો $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, હોય તો અનુક્રમે $x$ અને $y$ એ . . . . અંતરાલમાં આવે.