એક $n-$ આંકડાવાળી ઘન સંખ્યા છે. ત્રણ આંકડા $2,5,7$ વડે $n$ અલગ અલગ આંકડાની ઓછામાં ઓછી $900$ સંખ્યા બનાવી શકાય છે. તો $n$ ની ન્યુનતમ કિમત કેટલી થાય ?
$6$
$7$
$8$
$9$
બે સ્ત્રી અને $m$ પુરુષો એક ચેસ સ્પર્ધામાં ભાગ લે છે કે જેમાં દરેક ખેલાડી એકબીજા સાથે બે રમત રમે છે . જો પુરુષો એકબીજા સાથે રમાયેલ રમતની સંખ્યાએ પુરુષ અને સ્ત્રી વચ્ચે રમાયેલ રમત ની સંખ્યા કરતાં $84$ વધારે હોય તો પુરુષોની સંખ્યાની સંખ્યા મેળવો.
પરિક્ષામાં $3$ વૈકલ્પિક પ્રશ્નો છે અને દરેક પ્રશ્ન $4$ વિકલ્પ ધરાવે છે. જો વિદ્યાર્થીં બધાં જ પ્રશ્નોના સાચા ઉકેલ આપે તો જ ઉર્તીંણ જાહેર થાય તો તે કેટલી રીતે નાપાસ કરી શકે ?
વિધાન $1:$ $ 10$ સમાન દડાને $4$ ભિન્ન પેટીમાં $^9C_3$ રીતે ગોઠવી શકાય કે જેથી કેાઇપણ પેટી ખાલી ન રહે.
વિધાન $2$: $9$ ભિન્ન જગ્યામાંથી $3$ જગ્યાની પસંદગી $^9C_3$ રીતે થઇ શકે.
અહી ત્રણ થેલાઓ $B_1$,$B_2$ અને $B_3$ એવા છે જેમાં અનુક્રમે $2$ લાલ અને $3$ સફેદ,$5$ લાલ અને $5$ સફેદ,$3$ લાલ અને $2$ સફેદ દડાઓ છે થેલા $B_1$ માંથી એક દડો લઈને બીજા થેલા $B_2$ માં મૂકવામાં આવે પછી થેલા $B_2$ માંથી એક દડો લઈ થેલા $B_3$ માં મુકવામાં આવે અને છેલ્લે થેલા $B_3$ માંથી એક દડો લેવામાં આવે છે આ રીતે કેટલી પ્રક્રિયા થાય કે જેમાં પ્રથમ અને દ્રીતીય દડો ફેરવવામાં આવે તે સરખા રંગના હોય ? ( ધારો કે બધા દડાઓ ભિન્ન છે )
એક પુરૂષ $X$ ને $7$ મિત્રો છે તેમાંથી $4$ સ્ત્રીઓ છે અને $3 $ પુરૂષો છે.તેની પત્ની $Y$ ને પણ $7$ મિત્રો છે તેમાંથી $3$ સ્ત્રીઓ છે અને $4$ પુરૂષો છે. માની લો કે $X$ અને $Y$ ને એકપણ સમાન મિત્ર નથી. $X $ અને $Y$ ભેગા મળીને $ 3$ સ્ત્રીઓ અને $3$ પુરૂષો આમંત્રિત હોય તેવી પાર્ટી કેટલી રીતે આપશે કે જેથી તેમાં $X$ અને $ Y$ દરેકના ત્રણ મિત્રો હોય ? .