$\mathop A\limits^ \to \,$ અને $\mathop B\limits^ \to $ નો પરિણામી $\mathop A\limits^ \to \,$ સાથે $\alpha $ ખૂણો બનાવે છે. અને $\mathop B\limits^ \to \,$ સાથે $\beta $ ખૂણો બનાવે તો .....
${\alpha} < \beta $
${\alpha} < \beta $ જો $ A < B $
${\alpha} < \beta $ જો $ A > B $
${\alpha} < \beta $ જો $ A = B $
જો ત્રણ સદિશ વચ્ચેનો સંબંધ $\vec A . \vec B =0 $ અને $\vec A . \vec C =0$ હોય તો $\vec A $ ને સમાંતર .... થાય
ત્રણ સદિશોમાંથી બે સમાન સદિશો છે,અને એકનું મૂલ્ય બીજા બે સદિશો કરતાં $\sqrt 2 $ ગણું છે, જો $\overrightarrow A + \overrightarrow B + \overrightarrow C = 0$ હોય,તો સદિશો વચ્ચેનો ખૂણો
અલગ અલગ મૂલ્ય ધરાવતાં એક જ સમતલના કેટલા સદિશોનો સરવાળો કરતાં પરિણામી શૂન્ય મળે છે?
સદીશ $\mathop a\limits^ \to $ અને $\mathop b\limits^ \to $ માટે $|\mathop a\limits^ \to \,\, + \;\,\mathop b\limits^ \to |\,\,\, = \,\,\,|\mathop a\limits^ \to \,\, - \;\,\mathop b\limits^ \to |\,$ હોય તો $\mathop a\limits^ \to $ અને $\mathop b\limits^ \to $ વચ્ચેનો ખૂણો .... હોય.
$\mathop {\,{\rm{A}}}\limits^ \to \,\, + \;\,\mathop {\rm{B}}\limits^ \to \,\, + \,\,\mathop {\rm{C}}\limits^ \to \, = \,\,\mathop 0\limits^ \to $ આપેલ છે. ત્રણ સદિશ પૈકી બે સદિશોનું મૂલ્ય સમાન છે. અને ત્રીજા સદિશનું મૂલ્ય $\sqrt 2 $ ગણું કે જે બે સમાન મૂલ્ય સિવાયનું છે. તો સદિશો વચ્ચેના ખૂણાઓ શું હશે ?