${F_g}$ और ${F_e}$ क्रमश: गुरुत्वीय और स्थिर वैद्युत बल $10$ सेमी की दूरी पर स्थित इलेक्ट्रॉन के मध्य दर्शाते हैं, तो ${F_g}/{F_e}$ अनुपात की कोटि होगी
${10^{42}}$
$10$
$1$
${10^{ - 43}}$
दो समान गोले जिन पर $ + \,q$ और $ - \,q$ आवेश हैं कुछ दूरी पर रखे हैं। उनके बीच $F$ बल कार्य करता है। अगर दोनों गोलों के बीचोंबीच एकसमान $ + \,q$ आवेश का गोला रखा जाए तो उस पर कार्य करने वाले बल का मान व दिशा होगी
एक दूसरे से $5 \times {10^{ - 11}}\,m$ की दूरी पर स्थित इलेक्ट्रॉन एवं प्रोटॉन के मध्य स्थिर वैद्युत बल और गुरूत्वाकर्षण बल का अनुपात होगा (इलेक्ट्रॉन पर आवेश = $1.6 × 10 {^{-{19}}}\, C$, इलेक्ट्रॉन का द्रव्यमान $9.1 × 10 {^{-{31}}}$ $kg$, प्रोटॉन का द्रव्यमान = $1.6 \times {10^{ - 27}}\,kg,$ $\,G = 6.7 \times {10^{ - 11}}\,N{m^2}/k{g^2}$)
$-q$ आवेश तथा $m$ द्रव्यमान का एक कण $+\lambda$. रेखीय आवेश घनत्व के एक अनंत लम्बे रेखीय आवेश के परितः $r$ त्रिज्या के एक वृत्त में गति करता है। तब इसका आवर्त काल होगा
( $k$ को कूलॉम नियतांक मानकर)
दो समान टेनिस बॉलों को, जिनमें प्रत्येक का द्रव्यमान $'m'$ और आवेश $'q'$ है को $'l'$ लम्बाई के धागों के साथ एक स्थिर बिन्दु से लटकाया गया है। यदि प्रत्येक धागा, ऊर्ध्वाधर से छोटा कोण $'\theta'$ बनाए तो साम्यावस्था में धागों के बीच पथकन का मान होगा।
$10 \,cm$ भुजा वाले समबाहु त्रिभुज $ABC$ के शीर्षों पर क्रमश: $1\,\mu C, - 1\,\mu C$ तथा $2\,\mu C$ आवेश वायु में रखे गये हैं। शीर्ष $C$ पर स्थित आवेश पर परिणामी बल......$N$ होगा