$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&b&{{b^2}}\\1&c&{{c^2}}\end{array}\,} \right| = $
${a^2} + {b^2} + {c^2}$
$(a + b)\,(b + c)\,(c + a)$
$(a - b)(b - c)(c - a)$
None of these
If $\left| {\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&x&{{x^2}}\\{{b^2}}&{ab}&{{a^2}} \end{array}} \right|$ $= 0$ , then :
If the determinant $\left| {\begin{array}{*{20}{c}}{a\, + \,p}&{1\, + \,x}&{u\, + \,f}\\ {b\, + \,q}&{m\, + \,y}&{v\, + \,g}\\{c\, + \,r}&{n\, + \,z}&{w\, + \,h}\end{array}} \right|$ splits into exactly $K$ determinants of order $3$, each element of which contains only one term, then the value of $K$, is
The number of positive integral solutions of the equation $\left| {\begin{array}{*{20}{c}}{{x^3} + 1}&{{x^2}y}&{{x^2}z}\\{x{y^2}}&{{y^3} + 1}&{{y^2}z}\\{x{z^2}}&{y{z^2}}&{{z^3} + 1}\end{array}} \right|$ $= 11$ is
If $a,b,c$ are positive integers, then the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}{{a^2} + x}&{ab}&{ac}\\{ab}&{{b^2} + x}&{bc}\\{ac}&{bc}&{{c^2} + x}\end{array}\,} \right|$ is divisible by
The total number of distinct $x \in \mathbb{R}$ for which $\left|\begin{array}{ccc}x & x^2 & 1+x^3 \\ 2 x & 4 x^2 & 1+8 x^3 \\ 3 x & 9 x^2 & 1+27 x^3\end{array}\right|=10$ is