$2.\mathop {357}\limits^{ \bullet \,\, \bullet \,\, \bullet } = $

  • [IIT 1983]
  • A

    $\frac{{2355}}{{1001}}$

  • B

    $\frac{{2370}}{{997}}$

  • C

    $\frac{{2355}}{{999}}$

  • D

    None of these

Similar Questions

Which term of the $GP.,$ $2,8,32, \ldots$ up to $n$ terms is $131072 ?$

If $G$ be the geometric mean of $x$ and $y$, then $\frac{1}{{{G^2} - {x^2}}} + \frac{1}{{{G^2} - {y^2}}} = $

Let $\left\{a_k\right\}$ and $\left\{b_k\right\}, k \in N$, be two G.P.s with common ratio $r_1$ and $r_2$ respectively such that $a_1=b_1=4$ and $r_1 < r_2$. Let $c_k=a_k+k, \in N$. If $c_2=5$ and $c_3=13 / 4$ then $\sum \limits_{k=1}^{\infty} c_k - \left(12 a _6+8 b _4\right)$ is equal to

  • [JEE MAIN 2023]

Let $n \geq 3$ and let $C_1, C_2, \ldots, C_n$, be circles with radii $r_1, r_2, \ldots, r_n$, respectively. Assume that $C_i$ and $C_{i+1}$ touch externally for $1 \leq i \leq n-1$. It is also given that the $X$-axis and the line $y=2 \sqrt{2} x+10$ are tangential to each of the circles. Then, $r_1, r_2, \ldots, r_n$ are in

  • [KVPY 2014]

If $a,\;b,\;c$ are ${p^{th}},\;{q^{th}}$ and ${r^{th}}$ terms of a $G.P.$, then ${\left( {\frac{c}{b}} \right)^p}{\left( {\frac{b}{a}} \right)^r}{\left( {\frac{a}{c}} \right)^q}$ is equal to