किसी समान्तर श्रेणी का $7$ वाँ पद $40$ है, तो श्रेणी के प्रथम $13$ पदों का योग होगा

  • A

    $53$

  • B

    $520$

  • C

    $1040$

  • D

    $2080$

Similar Questions

यदि $\frac{a}{b},\frac{b}{c},\frac{c}{a}$ हरात्मक श्रेणी में हों, तो

माना $\left(\frac{1}{\sqrt{6}}+\beta x\right)^4,(1-3 \beta x)^2$ तथा $\left(1-\frac{\beta}{2} x \right)^6, \beta > 0$ के प्रसार में मध्य पदों के गुणांक क्रमश: एक $A.P.$ के पहले तीन पद हैं। यदि इस $A.P.$ का सार्व अंतर $d$ है, तो $50-\frac{2 d }{\beta^2}$ बराबर है

  • [JEE MAIN 2022]

माना $a _{1}, a _{2}, \ldots \ldots a _{30}$ एक समांतर श्रेणी है. $S =\sum_{i=1}^{30} a _{i}$ तथा $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $ यदि $a _{5}=27$ तथा $S -2 T =75$, तो $a _{10}$ बराबर है

  • [JEE MAIN 2019]

एक पूर्णांक तथा इसके घन का अन्तर विभाजित है

यदि एक समान्तर श्रेणी का $10^{\text {th }}$ वां पद $\frac{1}{20}$ है तथा इसका $20^{\text {th }}$ वां पद $\frac{1}{10}$ है, तो इसके प्रथम $200$ पदों का योग है

  • [JEE MAIN 2020]