$\mathrm{C}_1$ and $\mathrm{C}_2$ are two hollow concentric cubes enclosing charges $2 Q$ and $3 Q$ respectively as shown in figure. The ratio of electric flux passing through $\mathrm{C}_1$ and $\mathrm{C}_2$ is :
$2:5$
$5:2$
$2:3$
$3:2$
A point charge of $+\,12 \,\mu C$ is at a distance $6 \,cm$ vertically above the centre of a square of side $12\, cm$ as shown in figure. The magnitude of the electric flux through the square will be ....... $\times 10^{3} \,Nm ^{2} / C$
In a region of space the electric field is given by $\vec E = 8\hat i + 4\hat j+ 3\hat k$. The electric flux through a surface of area $100\, units$ in the $x-y$ plane is....$units$
The figure shows two situations in which a Gaussian cube sits in an electric field. The arrows and values indicate the directions and magnitudes (in $N-m^2/C$) of the electric fields. What is the net charge (in the two situations) inside the cube?
The magnitude of the average electric field normally present in the atmosphere just above the surface of the Earth is about $150\, N/C$, directed inward towards the center of the Earth . This gives the total net surface charge carried by the Earth to be......$kC$ [Given ${\varepsilon _0} = 8.85 \times {10^{ - 12}}\,{C^2}/N - {m^2},{R_E} = 6.37 \times {10^6}\,m$]
The electric field in a region is given by $\overrightarrow{ E }=\frac{2}{5} E _{0} \hat{ i }+\frac{3}{5} E _{0} \hat{ j }$ with $E _{0}=4.0 \times 10^{3}\, \frac{ N }{ C } .$ The flux of this field through a rectangular surface area $0.4 \,m ^{2}$ parallel to the $Y - Z$ plane is ....... $Nm ^{2} C ^{-1}$