$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $
${{n(n + 1)} \over 2}{\log _a}2$
${{n(n + 1)} \over 2}{\log _2}a$
${{{{(n + 1)}^2}{n^2}} \over 4}{\log _2}a$
એકપણ નહી.
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)= . . . .$
$\sqrt {(\log _{0.5}^24)} = . . $. .
જો $x, y, z \in R^+$ એવા છે કે જેથી $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ અને ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ થાય તો ${\log _x}z$ ની કિમત મેળવો .
સંખ્યા ${\log _{20}}3$ એ . . . અંતરાલમાં છે
જો ${x^{{3 \over 4}{{({{\log }_3}x)}^2} + {{\log }_3}x - {5 \over 4}}} = \sqrt 3 $ તો $x$ ને . . .