$\gamma$-decay occurs when
Pair annihilation takes place
Energy is released due to conversion of neutron into proton
Energy is released due to de-excitation of nucleus
None of these
List-$I$ shows different radioactive decay processes and List-$II$ provides possible emitted particles. Match each entry in List-$I$ with an appropriate entry from List-$II$, and choose the correct option.
List-$I$ | List-$II$ |
($P$) ${ }_{92}^{238} U \rightarrow{ }_{91}^{234} \mathrm{~Pa}$ | ($1$) one $\alpha$ particle and one $\beta^{+}$particle |
($Q$) ${ }_{82}^{214} \mathrm{~Pb} \rightarrow{ }_{82}^{210} \mathrm{~Pb}$ | ($2$) three $\beta^{-}$particles and one $\alpha$ particle |
($R$) ${ }_{81}^{210} \mathrm{Tl} \rightarrow{ }_{82}^{206} \mathrm{~Pb}$ | ($3$) two $\beta^{-}$particles and one $\alpha$ particle |
($S$) ${ }_{91}^{228} \mathrm{~Pa} \rightarrow{ }_{88}^{224} \mathrm{Ra}$ | ($4$) one $\alpha$ particle and one $\beta^{-}$particle |
($5$) one $\alpha$ particle and two $\beta^{+}$particles |
Atomic mass number of an element thorium is $232$ and its atomic number is $90$. The end product of this radioactive element is an isotope of lead (atomic mass $208$ and atomic number $82$). The number of alpha and beta particles emitted is
Which ray contain positively charged particle
A nucleus with $Z = 92$ emits the following in a sequence: $\alpha ,\,{\beta ^ - },\,{\beta ^ - },\,\alpha ,\alpha ,\alpha ,\alpha ,\alpha ,{\beta ^ - },\,{\beta ^ - },\alpha ,\,{\beta ^ + },\,{\beta ^ + },\,\alpha $. The $Z$ of the resulting nucleus is
How many alpha and beta particles are emitted when Uranium ${ }_{92} U ^{238}$ decays to lead ${ }_{82} Pb ^{206}$ ?