List-$I$ shows different radioactive decay processes and List-$II$ provides possible emitted particles. Match each entry in List-$I$ with an appropriate entry from List-$II$, and choose the correct option.

List-$I$ List-$II$
($P$) ${ }_{92}^{238} U \rightarrow{ }_{91}^{234} \mathrm{~Pa}$ ($1$) one $\alpha$ particle and one $\beta^{+}$particle
($Q$) ${ }_{82}^{214} \mathrm{~Pb} \rightarrow{ }_{82}^{210} \mathrm{~Pb}$ ($2$) three $\beta^{-}$particles and one $\alpha$ particle
($R$) ${ }_{81}^{210} \mathrm{Tl} \rightarrow{ }_{82}^{206} \mathrm{~Pb}$ ($3$) two $\beta^{-}$particles and one $\alpha$ particle
($S$) ${ }_{91}^{228} \mathrm{~Pa} \rightarrow{ }_{88}^{224} \mathrm{Ra}$ ($4$) one $\alpha$ particle and one $\beta^{-}$particle
  ($5$) one $\alpha$ particle and two $\beta^{+}$particles

  • [IIT 2023]
  • A

    $P \rightarrow 4, Q \rightarrow 3, R \rightarrow 2, S \rightarrow 1$

  • B

    $P \rightarrow 4, Q \rightarrow 1, R \rightarrow 2, S \rightarrow 5$

  • C

    $P \rightarrow 5, Q \rightarrow 3, R \rightarrow 1, S \rightarrow 4$

  • D

    $P \rightarrow 5, Q \rightarrow 1, R \rightarrow 3, S \rightarrow 2$

Similar Questions

${ }_{92}^{238} U$ atom disintegrates to ${ }_{84}^{214} Po$ with a half of $45 \times 10^9$ years by emitting $\operatorname{six} \alpha-$ particles and $n$ electrons. Here, $n$ is

  • [KVPY 2012]

The $\alpha$-particle is the nucleus of an atom of

A plot of the number of neutrons $(N)$ against the number of protons ( $P$ )of stable nuclei exhibits upward deviation from linearity for atomic number, $Z>20$. For an unstable nucleus having $N / P$ ratio less than $1$ , the possible mode($s$) of decay is(are)

($A$) $\beta^{-}$-decay ( $\beta$ emission)

($B$) orbital or $K$-electron sasture

($C$) neutron emission

($D$) $\beta^{+}$-decay (positron emission)

  • [IIT 2016]

What is the respective number of $\alpha $ and $\beta $ particles emitted in the following radioactive decay

$_{90}{X^{200}}{ \to _{80}}{Y^{168}}$

  • [AIPMT 1995]

In the equation ${ }_{13}^{27} Al +{ }_2^4 He \longrightarrow{ }_{15}^{30} P + X ,$ The correct symbol for $X$ is