$\sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j}$ is equal to
$2^{2 n }-{ }^{2 n } C _{ n }$
$2^{2 n -1}-^{2 n -1} C _{ n -1}$
$2^{2 n }-\frac{1}{2}{ }^{2 n } C _{ n }$
$2^{ n -1}+{ }^{2 n -1} C _{ n }$
If for positive integers $r> 1, n > 2$, the coefficients of the $(3r)^{th}$ and $(r + 2)^{th}$ powers of $x$ in the expansion of $( 1 + x)^{2n}$ are equal, then $n$ is equal to
If the sum of the coefficients in the expansion of ${(x - 2y + 3z)^n}$ is $128$ then the greatest coefficient in the expansion of ${(1 + x)^n}$ is
${n^n}{\left( {\frac{{n + 1}}{2}} \right)^{2n}}$ is
The value of$^n{C_1}\sum\limits_{r = 0}^1 {^1{C_r}} { + ^n}{C_2}\left( {\sum\limits_{r = 0}^2 {^2{C_r}} } \right){ + ^n}{C_3}\left( {\sum\limits_{r = 0}^3 {^3{C_r}} } \right) + ......{ + ^n}{C_n}\left( {\sum\limits_{r = 0}^n {^n{C_r}} } \right)$ is equal to
Let $\left( a + bx + cx ^2\right)^{10}=\sum \limits_{ i =0}^{20} p _{ i } x ^{ i }, a , b , c \in N$. If $p _1=20$ and $p _2=210$, then $2( a + b + c )$ is equal to