$\frac{1}{\sqrt{9}-\sqrt{8}}$ is equal to
$\frac{1}{2}(3-2 \sqrt{2})$
$3+2 \sqrt{2}$
$3-2 \sqrt{2}$
$\frac{1}{3+2 \sqrt{2}}$
State whether each of the following statements is true or false
$\sqrt{3} \times \sqrt{5}=\sqrt{8}$
Rationalise the denominator in each of the following
$\frac{5-2 \sqrt{6}}{5+2 \sqrt{6}}$
Simplify the following:
$4 \sqrt{12} \times 7 \sqrt{6}$
Show that $0.142857142857 \ldots=\frac{1}{7}$
Find the values of each of the following correct to three places of decimals, rationalising the denominator if needed and taking $\sqrt{2}=1.414$ $\sqrt{3}=1.732$ and $\sqrt{5}=2.236$
$\frac{\sqrt{10}-\sqrt{5}}{2}$