$\frac{1}{\sqrt{9}-\sqrt{8}}$ is equal to

  • A

    $\frac{1}{2}(3-2 \sqrt{2})$

  • B

    $3+2 \sqrt{2}$

  • C

    $3-2 \sqrt{2}$

  • D

    $\frac{1}{3+2 \sqrt{2}}$

Similar Questions

State whether each of the following statements is true or false

$\sqrt{3} \times \sqrt{5}=\sqrt{8}$

Rationalise the denominator in each of the following

$\frac{5-2 \sqrt{6}}{5+2 \sqrt{6}}$

Simplify the following:

$4 \sqrt{12} \times 7 \sqrt{6}$

Show that $0.142857142857 \ldots=\frac{1}{7}$

Find the values of each of the following correct to three places of decimals, rationalising the denominator if needed and taking $\sqrt{2}=1.414$ $\sqrt{3}=1.732$ and $\sqrt{5}=2.236$

$\frac{\sqrt{10}-\sqrt{5}}{2}$