$\frac{1}{\sqrt{9}-\sqrt{8}}$ is equal to

  • A

    $\frac{1}{2}(3-2 \sqrt{2})$

  • B

    $3+2 \sqrt{2}$

  • C

    $3-2 \sqrt{2}$

  • D

    $\frac{1}{3+2 \sqrt{2}}$

Similar Questions

Classify the following numbers as rational or irrational with justification:

$(i)$ $\sqrt{196}$

$(ii)$ $3 \sqrt{18}$

Express $0.7 \overline{39}$ in the form $\frac{P}{q} ;$ where $p$ and $q$ are integers and $q \neq 0$

Represent geometrically numbers on the number line:

$\sqrt{2.3}$

Classify the following numbers as rational or irrational with justification:

$(i)$ $\sqrt{\frac{9}{27}}$

$(ii)$ $\frac{\sqrt{28}}{\sqrt{343}}$

If $a=\frac{\sqrt{5}}{8}$ and $\frac{8}{a}=b \sqrt{5},$ then find $b$.