$\frac{1}{\sqrt{9}-\sqrt{8}}$ is equal to
$\frac{1}{2}(3-2 \sqrt{2})$
$3+2 \sqrt{2}$
$3-2 \sqrt{2}$
$\frac{1}{3+2 \sqrt{2}}$
Classify the following numbers as rational or irrational with justification:
$(i)$ $\sqrt{196}$
$(ii)$ $3 \sqrt{18}$
Express $0.7 \overline{39}$ in the form $\frac{P}{q} ;$ where $p$ and $q$ are integers and $q \neq 0$
Represent geometrically numbers on the number line:
$\sqrt{2.3}$
Classify the following numbers as rational or irrational with justification:
$(i)$ $\sqrt{\frac{9}{27}}$
$(ii)$ $\frac{\sqrt{28}}{\sqrt{343}}$
If $a=\frac{\sqrt{5}}{8}$ and $\frac{8}{a}=b \sqrt{5},$ then find $b$.