Check whether the following probabilities $P(A)$ and $P(B)$ are consistently defined $P ( A )=0.5$, $ P ( B )=0.4$, $P ( A \cap B )=0.8$
Two aeroplanes $I$ and $II$ bomb a target in succession. The probabilities of $l$ and $II$ scoring a hit correctlyare $0.3$ and $0.2,$ respectively. The second plane will bomb only if the first misses the target. The probability that the target is hit by the second plane is
Let $S=\{1,2,3, \ldots, 2022\}$. Then the probability, that a randomly chosen number $n$ from the set $S$ such that $\operatorname{HCF}( n , 2022)=1$, is.
Consider three sets $E_1=\{1,2,3\}, F_1=\{1,3,4\}$ and $G_1=\{2,3,4,5\}$. Two elements are chosen at random, without replacement, from the set $E _1$, and let $S _1$ denote the set of these chosen elements.
Let $E_2=E_1-S_1$ and $F_2=F_1 \cup S_1$. Now two elements are chosen at random, without replacement, from the set $F_2$ and let $S_2$ denote the set of these chosen elements.
Let $G _2= G _1 \cup S _2$. Finally, two elements are chosen at random, without replacement, from the set $G _2$ and let $S _3$ denote the set of these chosen elements.
Let $E_3=E_2 \cup S_3$. Given that $E_1=E_3$, let $p$ be the conditional probability of the event $S_1=\{1,2\}$. Then the value of $p$ is
One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $\mathrm{E}$ and $\mathrm{F}$ independent ?
$E:$ ' the card drawn is a king and queen '
$F:$ ' the card drawn is a queen or jack '