Let $S=\{1,2,3, \ldots, 2022\}$. Then the probability, that a randomly chosen number $n$ from the set $S$ such that $\operatorname{HCF}( n , 2022)=1$, is.

  • [JEE MAIN 2022]
  • A

    $\frac{128}{1011}$

  • B

    $\frac{166}{1011}$

  • C

    $\frac{127}{337}$

  • D

    $\frac{112}{337}$

Similar Questions

If odds against solving a question by three students are $2 : 1 ,  5:2$ and $5:3$ respectively, then probability that the question is solved only by one student is

Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that exactly one of them problem

Let $A$ and $B $ be two events such that  $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ and $P\left( {\bar A} \right) = \frac{1}{4}$ where $\bar A$ stands for the complement of the event $A$. Then the events $A$ and$B$ are

  • [JEE MAIN 2014]

The chance of an event happening is the square of the chance of a second event but the odds against the first are the cube of the odds against the second. The chances of the events are

If $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5},$ find $P(A \cap B)$ if $A$ and $B$ are independent events