Let $S=\{1,2,3, \ldots, 2022\}$. Then the probability, that a randomly chosen number $n$ from the set $S$ such that $\operatorname{HCF}( n , 2022)=1$, is.
$\frac{128}{1011}$
$\frac{166}{1011}$
$\frac{127}{337}$
$\frac{112}{337}$
If odds against solving a question by three students are $2 : 1 , 5:2$ and $5:3$ respectively, then probability that the question is solved only by one student is
Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that exactly one of them problem
Let $A$ and $B $ be two events such that $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ and $P\left( {\bar A} \right) = \frac{1}{4}$ where $\bar A$ stands for the complement of the event $A$. Then the events $A$ and$B$ are
The chance of an event happening is the square of the chance of a second event but the odds against the first are the cube of the odds against the second. The chances of the events are
If $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5},$ find $P(A \cap B)$ if $A$ and $B$ are independent events