$\tan \,{20^o}\cot \,{10^o}\cot \,{50^o}$ is equal to
$\frac{1}{{\sqrt 3 }}$
$\sqrt 3 $
$\frac{{\sqrt 3 }}{4}$
$4\sqrt 3 $
The number of solutions of the given equation $\tan \theta + \sec \theta = \sqrt 3 ,$ where $0 < \theta < 2\pi $ is
General solution of $eq^n\, 2tan\theta \, -\, cot\theta =\, -1$ is
If sum of all the solutions of the equation $8\cos x \cdot \left( {\cos \left( {\frac{\pi }{6} + x} \right) \cdot \cos \left( {\frac{\pi }{6} - x} \right) - \frac{1}{2}} \right) = 1$ in $\left[ {0,\pi } \right]$ is $k\pi $then $k$ is equal to :
If ${\sin ^2}\theta = \frac{1}{4},$ then the most general value of $\theta $ is
The sum of solutions of the equation $\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}=|\tan 2 \mathrm{x}|, \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ is :