$\tan \,{20^o}\cot \,{10^o}\cot \,{50^o}$ is equal to
$\frac{1}{{\sqrt 3 }}$
$\sqrt 3 $
$\frac{{\sqrt 3 }}{4}$
$4\sqrt 3 $
If $\alpha ,\,\beta ,\,\gamma $ and $\delta $ are the solutions of the equation $\tan \left( {\theta + \frac{\pi }{4}} \right) = 3\,\tan \,3\theta $ , no two of which have equal tangents, then the value of $tan\, \alpha + tan\, \beta + tan\, \gamma + tan\, \delta $ is
If $\cos 7\theta = \cos \theta - \sin 4\theta $, then the general value of $\theta $ is
The number of values of $x$ in the interval $[0, 5 \pi ] $ satisfying the equation $3{\sin ^2}x - 7\sin x + 2 = 0$ is
If $\cos p\theta = \cos q\theta ,p \ne q$, then
If $\mathrm{n}$ is the number of solutions of the equation
$2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$
and $S$ is the sum of all these solutions, then the ordered pair $(\mathrm{n}, \mathrm{S})$ is :