Make correct statements by filling in the symbols $\subset$ or $ \not\subset $ in the blank spaces:
$\{ x:x$ is a circlein the plane $\} \ldots \{ x:x$ is a circle in thesame plane with radius $1$ unit $\} $
Decide, among the following sets, which sets are subsets of one and another:
$A = \{ x:x \in R$ and $x$ satisfy ${x^2} - 8x + 12 = 0 \} ,$
$B=\{2,4,6\}, C=\{2,4,6,8 \ldots\}, D=\{6\}$
The number of elements in the set $\{x \in R :(|x|-3)|x+4|=6\}$ is equal to
In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If $x \in A$ and $A \in B,$ then $x \in B$
Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\},$ which of the following may be considered as universal set $(s)$ for all the three sets $A$, $B$ and $C$
$\{ 1,2,3,4,5,6,7,8\} $