Write the following cubes in expanded form : $\left[\frac{3}{2} x+1\right]^{3}$
Using Identity $VI$ and Identity $VII,$ we have
$(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y),$ and $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$\left[\frac{3}{2} x+1\right]^{3}=\left(\frac{3}{2} x\right)^{3}+(1)^{3}+3\left(\frac{3}{2} x\right)$ $(1)$ $\left[\frac{3}{2} x+1\right]$
$=\frac{27}{8} x^{3}+1+\frac{9}{2} x\left[\frac{3}{2} x+1\right]$ [Using Identity $VI$]
$=\frac{27}{8} x^{3}+1+\frac{27}{4} x^{2}+\frac{9}{2} x=\frac{27}{8} x^{3}+\frac{27}{4} x^{2}+\frac{9}{2} x+1$
Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(x)=(x-1)(x+1)$
Factorise $y^2 -5y + 6$ by using the Factor Theorem.
Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$.
Find the zero of the polynomial : $p(x) = x -5$
Classify the following as linear, quadratic and cubic polynomials :
$(i)$ $1+x$
$(ii)$ $3 t$
$(iii)$ $r^{2}$
$(iv)$ $7 x^{3}$