Write the following cubes in expanded form : $\left[\frac{3}{2} x+1\right]^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Using Identity $VI$ and Identity $VII,$ we have

$(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y),$ and $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$

$\left[\frac{3}{2} x+1\right]^{3}=\left(\frac{3}{2} x\right)^{3}+(1)^{3}+3\left(\frac{3}{2} x\right)$ $(1)$ $\left[\frac{3}{2} x+1\right]$

$=\frac{27}{8} x^{3}+1+\frac{9}{2} x\left[\frac{3}{2} x+1\right]$             [Using Identity $VI$]

$=\frac{27}{8} x^{3}+1+\frac{27}{4} x^{2}+\frac{9}{2} x=\frac{27}{8} x^{3}+\frac{27}{4} x^{2}+\frac{9}{2} x+1$

Similar Questions

Find $p(0)$, $p(1)$ and $p(2)$ for  of the following polynomials : $p(x)=(x-1)(x+1)$

Factorise $y^2 -5y + 6$ by using the Factor Theorem.

Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$.

Find the zero of the polynomial : $p(x) = x -5$

Classify the following as linear, quadratic and cubic polynomials :

$(i)$ $1+x$

$(ii)$ $3 t$

$(iii)$ $r^{2}$

$(iv)$ $7 x^{3}$