આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=-1, a_{n}=\frac{a_{n-1}}{n},$ માટે $n\, \geq\, 2$
$a_{1}=-1, a_{n}=\frac{a_{n-1}}{n}, n\, \geq \,2$
$\Rightarrow a_{2}=\frac{a_{1}}{2}=\frac{-1}{2}$
$a_{3}=\frac{a_{2}}{3}=\frac{-1}{6}$
$a_{4}=\frac{a_{3}}{4}=\frac{-1}{24}$
$a_{5}=\frac{a_{4}}{5}=\frac{-1}{120}$
Hence, the first five terms of the sequence are $-1, \frac{-1}{2}, \frac{-1}{6}, \frac{-1}{24}$ and $\frac{-1}{120}$
The corresponding series is $(-1)+\left(\frac{-1}{2}\right)+\left(\frac{-1}{6}\right)+\left(\frac{-1}{24}\right)+\left(\frac{-1}{120}\right)+\ldots$
જો સમીકરણ $a{x^2} + bx + c = 0$ ના બીજનો સરવાળો એ બીજના વર્ગના વ્યસ્તના સરવાળા બરાબર હોય તો $b{c^2},\;c{a^2},\;a{b^2}$ એ . . . . શ્રેણીમાં છે .
સમાંતર શ્રેણીનાં $n $ પદોનો સરવાળો $nA + n^2B$ છે, જ્યાં $A$ અને $B$ અચળ છે, તો આ શ્રેણીનો સામાન્ય તફાવત....... છે.
જો એક સમાંતર શ્રેણી માટે $S_{2n} = 2S_n$ હોય, તો $S_{3n}/ S_n = …….$
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=\frac{2 n-3}{6}$
જો $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$ $({x_i} \ne \,0\, $ બધા $\,i\, = 1,2,....,n)$ એ સમાંતર શ્રેણીમાં હોય કે જ્યાં $x_1 = 4$ અને $x_{21} = 20$ અને $x_n > 50$ જ્યાં $n$ એ ન્યૂનતમ ધન પૂર્ણાંક સંખ્યા છે તો $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $ ની કિમત મેળવો