Write proportionality constant of Biot-Savart law with unit and value (magnitude).
In an ionised sodium atom, an electron is moving in a circular path of radius $r$ with angular velocity $\omega $. The magnetic induction in $wb/m^2$ produced at the nucleus will be
Give similarity between Biot-Savart law and electrostatic law of Coulomb.
A charge $q$ coulomb moves in a circle at $n$ revolutions per second and the radius of the circle is $r$ metre; then magnetic field at the centre of the circle is
The magnitude of magnetic induction at mid-point $O$ due to current arrangement as shown in Fig will be
The magnetic field at the origin due to a current element $i\,\overrightarrow {dl} $ placed at position $\vec r$ is
$(i)\,\,\left( {\frac{{{\mu _0}i}}{{4\pi }}} \right)\left( {\frac{{d\vec l\, \times \,\vec r}}{{{r^3}}}} \right)$
$(ii)\,\, - \left( {\frac{{{\mu _0}i}}{{4\pi }}} \right)\left( {\frac{{d\vec l\, \times \,\vec r}}{{{r^3}}}} \right)$
$(iii)\,\left( {\frac{{{\mu _0}i}}{{4\pi }}} \right)\left( {\frac{{\,\vec r \times d\vec l}}{{{r^3}}}} \right)$
$(iv)\, - \left( {\frac{{{\mu _0}i}}{{4\pi }}} \right)\left( {\frac{{\,\vec r \times d\vec l}}{{{r^3}}}} \right)$