The number of values of $c$ such that line $y = cx + c$, $c \in R$ touches the curve $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$ is
$0$
$1$
$2$
more than $2$
An ellipse inscribed in a semi-circle touches the circular arc at two distinct points and also touches the bounding diameter. Its major axis is parallel to the bounding diameter. When the ellipse has the maximum possible area, its eccentricity is
Let $E$ be the ellipse $\frac{x^2}{16}+\frac{y^2}{9}=1$. For any three distinct points $P, Q$ and $Q^{\prime}$ on $E$, let $M(P, Q)$ be the mid-point of the line segment joining $P$ and $Q$, and $M \left( P , Q ^{\prime}\right)$ be the mid-point of the line segment joining $P$ and $Q ^{\prime}$. Then the maximum possible value of the distance between $M ( P , Q )$ and $M \left( P , Q ^{\prime}\right)$, as $P, Q$ and $Q^{\prime}$ vary on $E$, is. . . . .
In an ellipse, the distance between its foci is $6$ and minor axis is $8.$ Then its eccentricity is :
Let the line $2 \mathrm{x}+3 \mathrm{y}-\mathrm{k}=0, \mathrm{k}>0$, intersect the $\mathrm{x}$-axis and $\mathrm{y}$-axis at the points $\mathrm{A}$ and $\mathrm{B}$, respectively. If the equation of the circle having the line segment $\mathrm{AB}$ as a diameter is $\mathrm{x}^2+\mathrm{y}^2-3 \mathrm{x}-2 \mathrm{y}=0$ and the length of the latus rectum of the ellipse $\mathrm{x}^2+9 \mathrm{y}^2=\mathrm{k}^2$ is $\frac{\mathrm{m}}{\mathrm{n}}$, where $\mathrm{m}$ and $\mathrm{n}$ are coprime, then $2 \mathrm{~m}+\mathrm{n}$ is equal to
A tangent to the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$ intersect the co-ordinate axes at $A$ and $B,$ then locus of circumcentre of triangle $AOB$ (where $O$ is origin) is