Which one of the following is not bounded on the intervals as indicated
$f(x) =$ ${2^{\frac{1}{{x - 1}}}}$ on $(0, 1)$
$g(x) = x cos \frac{1}{x} $ on $(-\infty ,\infty )$
$h(x) = xe^{-x} $ on $(0, \infty )$
$l (x) =tan^{-1} 2^x $ on $ (-\infty , \infty )$
For $x\,\, \in \,R\,,x\, \ne \,0,$ let ${f_0}(x) = \frac{1}{{1 - x}}$ and ${f_{n + 1}}(x) = {f_0}({f_n}(x)),$ $n\, = 0,1,2,....$ Then the value of ${f_{100}}(3) + {f_1}\left( {\frac{2}{3}} \right) + {f_2}\left( {\frac{3}{2}} \right)$ is equal to
Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function which satisfies $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{R} .$ If $\mathrm{f}(1)=2$ and $g(n)=\sum \limits_{k=1}^{(n-1)} f(k), n \in N$ then the value of $n,$ for which $\mathrm{g}(\mathrm{n})=20,$ is
The function $f(x) =$ ${x^{\frac{1}{{\ln \,x}}}}$
Show that none of the operations given above has identity.