આપેલ વિધાનનું નિષેધ કરો : -
"દરેક $M\,>\,0$ માટે $x \in S$ અસ્તિત્વ ધરાવે કે જેથી $\mathrm{x} \geq \mathrm{M}^{\prime \prime} ?$
$M\,>\,0$ અસ્તિત્વ ધરાવે કે જેથી દરેક $x \in S$ માટે $x \geq M$
$M\,>\,0$ અસ્તિત્વ ધરાવે , કોઈક $x \in S$ અસ્તિત્વ ધરાવે કે જેથી $x \geq M$
$M\,>\,0$ અસ્તિત્વ ધરાવે કે જેથી દરેક $x \in S$ માટે $x < M$
$M\,>\,0$ અસ્તિત્વ ધરાવે , કોઈક $x \in S$ અસ્તિત્વ ધરાવે કે જેથી $x < M$
બે વિધાનો ધ્યાનથી જુઓ.
$(\mathrm{S} 1):(\mathrm{p} \rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \rightarrow \mathrm{p})$ એ સંપૂર્ણ સત્ય છે
$(S2): (\mathrm{p} \wedge \sim \mathrm{q}) \wedge(\sim \mathrm{p} \vee \mathrm{q})$ એ તર્કદોષી છે
તો .. . . . .
$( p \Delta q ) \Rightarrow(( p \Delta \sim q ) \vee((\sim p ) \Delta q ))$ નિત્યસત્ય થાય તે માટે $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$ ની પસંદગી કેટલી રીતે થઈ શકે?
બુલિયન બહુપદી $p \Leftrightarrow( q \Rightarrow p )$ નું નિષેધ કરો .
જો વિધાન $p \to \left( { \sim q \vee r} \right)$ એ મિથ્યા હોય તો વિધાન $p, q, r$ ના સત્યાર્થતાનું મુલ્ય અનુક્રમે ............ થાય
જો $\mathrm{A}, \mathrm{B}, \mathrm{C}$ અને $\mathrm{D}$ એ ચાર અરિક્ત ગણ છે . તો વિધાન" જો $\mathrm{A} \subseteq \mathrm{B}$ અને $\mathrm{B} \subseteq \mathrm{D},$ તો $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ નું સમાનર્થી પ્રેરણ મેળવો.