Which of the following is function
$y = \sqrt x - \left| x \right|;\,\,x \in R$
$y = \sqrt x - \left| x \right|;\,\,x \ge 1$
$x = {y^2}$
none
Function ${\sin ^{ - 1}}\sqrt x $ is defined in the interval
The number of points, where the curve $f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in R$ cuts $x$-axis, is equal to
If $f\left( x \right) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} - 1$ , $x \in R$ , then the equation $f(x) = 0$ has
The domain of ${\sin ^{ - 1}}({\log _3}x)$ is
Let $S=\{1,2,3,4\}$. Then the number of elements in the set $\{f: S \times S \rightarrow S: f$ is onto and $f(a, b)=f(b, a)$ $\geq a; \forall(a, b) \in S \times S\}$ is