Range of $f(x) = sin^{-1} (\sqrt {x^2 + x +1})$ is -
$\left[ {0,\frac{\pi }{6}} \right]$
$\left[ {\frac{\pi }{6},\frac{\pi }{4}} \right]$
$\left[ {\frac{\pi }{4},\frac{\pi }{3}} \right]$
$\left[ {\frac{\pi }{3},\frac{\pi }{2}} \right]$
If $f:\left\{ {1,2,3,4} \right\} \to \left\{ {1,2,3,4} \right\}$ and $y=f(x)$ be a function such that $\left| {f\left( \alpha \right) - \alpha } \right| \leqslant 1$,for $\alpha \in \left\{ {1,2,3,4} \right\}$ then total number of such functions are
The period of the function $f (x) =$$\frac{{|\sin x| + |\cos x|}}{{|\sin x - \cos x|}}$ is
The number of functions $f$, from the set$A=\left\{x \in N: x^{2}-10 x+9 \leq 0\right\}$ to the set $B=\left\{n^{2}: n \in N\right\}$ such that $f(x) \leq(x-3)^{2}+1$, for every $x \in A$, is.
Numerical value of the expression $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ for $x = - 3$ is
Let $f : N \rightarrow R$ be a function such that $f(x+y)=2 f(x) f(y)$ for natural numbers $x$ and $y$. If $f(1)=2$, then the value of $\alpha$ for which
$\sum \limits_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)$ holds, is