Which of the following function can satisfy Rolle's theorem ?

  • A

    $f(x) = |\ sgn\ (x)|$ in $[-1, 1]$ (where $sgn\ (x)$ represents signum function)

  • B

    $f(x) = 3x^2 - 2$ in $[2, 3]$

  • C

    $f(x) = |x - 1|$ in $[0, 2]$

  • D

    $f(x) = (x + \frac{1}{x})$ in $[\frac{1}{3} , 3]$

Similar Questions

Rolle's theorem is true for the function $f(x) = {x^2} - 4 $ in the interval

If the function $f(x) = 2x^2 + 3x + 5$ satisfies $LMVT$ at $x = 3$ on the closed interval $[1, a]$ then the value of $a$ is equal to

From mean value theorem $f(b) - f(a) = $ $(b - a)f'({x_1});$   $a < {x_1} < b$ if $f(x) = {1 \over x}$, then ${x_1} = $

If $f$ is a differentiable function such that $f(2x + 1) = f(1 -2x)$ $\forall \,\,x \in R$ then minimum number of roots of the equation $f'(x) = 0$ in $x \in \left( { - 5,10} \right)$ ,given that $f(2) = f(5) = f(10)$ , is

Let $f$ be any function defined on $R$ and let it satisfy the condition

$|f( x )-f( y )| \leq\left|( x - y )^{2}\right|, \forall( x , y ) \in R$ If $f(0)=1,$ then

  • [JEE MAIN 2021]