Which of the field patterns given below is valid for electric field as well as for magnetic field?
In the hydrogen atom, the electron is making $6.6 \times {10^{15}}\,r.p.s.$ If the radius of the orbit is $0.53 \times {10^{ - 10}}\,metre,$ then magnetic field produced at the centre of the orbit is......$Tesla$
Two concentric coplanar circular loops of radii ${r_1}$ and ${r_2}$ carry currents of respectively ${i_1}$ and ${i_2}$ in opposite directions (one clockwise and the other anticlockwise.) The magnetic induction at the centre of the loops is half that due to ${i_1}$ alone at the centre. If ${r_2} = 2{r_1}.$ the value of ${I_2}/{I_1}$ is....
A current of $0.1\, A$ circulates around a coil of $100$ $turns$ and having a radius equal to $5\,cm$. The magnetic field set up at the centre of the coil is ($\mu_0 = 4\pi \times 10^{-7} weber/amp-metre$)
A current carrying loop consists of $3$ identical quarter circles of radius $\mathrm{R}$, lying in the positive quadrants of the $\mathrm{xy}$ , $\mathrm{yz}$ and $\mathrm{zx}$ planes with their centres at the origin, joined together. Find the direction and magnitude of $\mathrm{B}$ at the origin.
An element $\Delta l=\Delta x \hat{ i }$ is placed at the origin and carries a large current $I=10\; A$ (Figure). What is the magnetic field on the $y$ -axis at a distance of $0.5 \;m . \Delta x=1\; cm$