When a positive $q$ charge is taken from lower potential to a higher potential point, then its potential energy will
Decrease
Increases
Remain unchanged
Become zero
Two charges of magnitude $5\, nC$ and $-2\, nC$, one placed at points $(2\, cm, 0, 0)$ and $(x\, cm, 0, 0)$ in a region of space, where there is no other external field. If the electrostatic potential energy of the system is $ - 0.5\,\mu J$. The value of $x$ is.....$cm$
Mass of charge $Q$ is $m$ and mass of charge $2Q$ is $4\,m$ . If both are released from rest, then what will be $K.E.$ of $Q$ at infinite separation
A simple pendulum with a bob of mass $m = 1\ kg$ , charge $q = 5\mu C$ and string length $l = 1\ m$ is given a horizontal velocity $u$ in a uniform electric field $E = 2 × 10^6\ V/m$ at its bottom most point $A$ , as shown in figure. It is given a speed $u$ such that the particle leave the circular path at its topmost point $C$ . Find the speed $u$ . (Take $g = 10\ m/s^2$ )
A bullet of mass $2\, gm$ is having a charge of $2\,\mu C$. Through what potential difference must it be accelerated, starting from rest, to acquire a speed of $10\,m/s$
In a hydrogen atom, the electron and proton are bound at a distance of about $0.53\; \mathring A:$
$(a)$ Estimate the potential energy of the system in $eV$, taking the zero of the potential energy at infinite separation of the electron from proton.
$(b)$ What is the minimum work required to free the electron, given that its kinetic energy in the orbit is half the magnitude of potential energy obtained in $(a)?$
$(c)$ What are the answers to $(a)$ and $(b)$ above if the zero of potential energy is taken at $1.06\;\mathring A$ separation?