What should be the shape of the pillars or column in building and bridge ?
As shown in figures a pillars or columns with rounded ends supports less load than that with a distributed shape at the ends can be used.
A pillar with rounded ends support less load than that with a distributed shape at the ends.
A wire of length $L$ and radius $r$ is clamped at one end. If its other end is pulled by a force $F$, its length increases by $l$. If the radius of the wire and the applied force both are reduced to half of their original values keeping original length constant, the increase in length will become.
A mild steel wire of length $2l$ meter cross-sectional area $A \;m ^2$ is fixed horizontally between two pillars. A small mass $m \;kg$ is suspended from the mid point of the wire. If extension in wire are within elastic limit. Then depression at the mid point of wire will be .............
Two steel wires of same length but radii $r$ and $2r$ are connected together end to end and tied to a wall as shown. The force stretches the combination by $10\ mm$ . How far does the midpoint $A$ move ......... $mm$
A rigid bar of mass $15\,kg$ is supported symmetrically by three wire each of $2 \,m$ long. These at each end are of copper and middle one is of steel. Young's modulus of elasticity for copper and steel are $110 \times 10^9 \,N / m ^2$ and $190 \times 10^9 \,N / m ^2$ respectively. If each wire is to have same tension, ratio of their diameters will be ............
In steel, the Young's modulus and the strain at the breaking point are $2 \times {10^{11}}\,N{m^{ - 2}}$ and $0.15$ respectively. The stress at the breaking point for steel is therefore