What is the potential energy of the equal positive point charges of $1\,\mu C$ each held $1\, m$ apart in air
$9 \times {10^{ - 3}}\,J$
$9 \times {10^{ - 3}}\,eV$
$2\,eV/m$
Zero
Mass of charge $Q$ is $m$ and mass of charge $2Q$ is $4\,m$ . If both are released from rest, then what will be $K.E.$ of $Q$ at infinite separation
A point charge $q$ is held at the centre of a circle of radius $r . B, C$ are two points on the circumference of the circle and $A$ is a point outside the circle. If $W_{A B}$ represents work done by electric field in taking a charge $q_0$ from $A$ to $B$ and $W_{A C}$ represents the workdone from $A$ to $C$, then
A uniformly charged thin spherical shell of radius $\mathrm{R}$ carries uniform surface charge density of $\sigma$ per unit area. It is made of two hemispherical shells, held together by pressing them with force $\mathrm{F}$ (see figure). $\mathrm{F}$ is proportional to
$(a)$ Calculate the potential at a point $P$ due to a charge of $4 \times 10^{-7}\; C$ located $9 \;cm$ away.
$(b)$ Hence obtain the work done in bringing a charge of $2 \times 10^{-9} \;C$ from infinity to the point $P$. Does the answer depend on the path along which the charge is brought?
Two positrons $(e^+)$ and two protons $(p)$ are kept on four corners of a square of side $a$ as shown in figure. The mass of proton is much larger than the mass of positron. Let $q$ denotes the charge on the proton as well as the positron then the kinetic energies of one of the positrons and one of the protons respectively after a very long time will be-