Figure shows graph between stress and strain for a uniform wire at two different femperatures. Then
Two wires $A$ and $B$ of same length, same area of cross-section having the same Young's modulus are heated to the same range of temperature. If the coefficient of linear expansion of $A$ is $3/2$ times of that of wire $B$. The ratio of the forces produced in two wires will be
A copper wire of length $2.2 \;m$ and a steel wire of length $1.6\; m ,$ both of diameter $3.0 \;mm ,$ are connected end to end. When stretched by a load, the net elongation is found to be $0.70 \;mm$. Obtain the load applied in $N$.
Four uniform wires of the same material are stretched by the same force. The dimensions of wire are as given below. The one which has the minimum elongation has
Column$-II$ is related to Column$-I$. Join them appropriately :
Column $-I$ | Column $-II$ |
$(a)$ When temperature raised Young’s modulus of body | $(i)$ Zero |
$(b)$ Young’s modulus for air | $(ii)$ Infinite |
$(iii)$ Decreases | |
$(iv)$Increases |