What is the coefficient of mutual inductance when the magnetic flux changes by $2 \times 10^{-2}\,Wb$ and change in current is $0.01\,A$......$ henry$
$2$
$3$
$0.5$
$0$
Two coils $P$ and $Q$ are separated by some distance. When a current of $3\, A$ flows through coil $P$ a magnetic flux of $10^{-3}\, Wb$ passes through $Q$. No current is passed through $Q$. When no current passes through $P$ and a current of $2\, A$ passes through $Q$, the flux through $P$ is
Two coils, $X$ and $Y$, are kept in close vicinity of each other. When a varying current, $I(t)$, flows through coil $X$, the induced emf $(V(t))$ in coil $Y$, varies in the manner shown here. The variation of $I(t)$; with time, can then be represented by the graph labelled as graph
The pointer of a dead-beat galvanometer gives a steady deflection because
In $SI$, Henry is the unit of
The mutual inductance between two coils is $1.25$ $henry$. If the current in the primary changes at the rate of $80$ $ampere/second,$ then the induced $e.m.f$ in the secondary is......$V$