Two coils $P$ and $Q$ are separated by some distance. When a current of $3\, A$ flows through coil $P$ a magnetic flux of $10^{-3}\, Wb$ passes through $Q$. No current is passed through $Q$. When no current passes through $P$ and a current of $2\, A$ passes through $Q$, the flux through $P$ is
$6.67 \times {10^{ - 3}}\,Wb$
$6.67 \times {10^{ - 4}}\,Wb$
$3.67 \times {10^{ - 4}}\,Wb$
$3.67 \times {10^{ - 3}}\,Wb$
Give two definitions of mutual inductance, give its units and write factors on which its value depends.
The area of its cross-section is $1.2 \times {10^{ - 3}}{m^2}$. Around its central section, a coil of $300$ turns is wound. If an initial current of $2A$ in the solenoid is reversed in $0.25\, sec$, then the $e.m.f$. induced in the coil is
What is the coefficient of mutual inductance when the magnetic flux changes by $2 \times {10^{ - 2}}\,Wb$ and change in current is $0.01\,A$......$henry$
What is the mutual inductance of a two-loop system as shown with centre separation l
Two circuits have coefficient of mutual induction of $0.09$ $henry$. Average $e.m.f$. induced in the secondary by a change of current from $0$ to $20$ $ampere$ in $0.006$ $second$ in the primary will be......$V$