What is the angle between $\overrightarrow P $ and the resultant of $(\overrightarrow P + \overrightarrow Q )$ and $(\overrightarrow P - \overrightarrow Q )$
Zero
${\tan ^{ - 1}}(P/Q)$
${\tan ^{ - 1}}(Q/P)$
${\tan ^{ - 1}}(P - Q)/(P + Q)$
For the resultant of the two vectors to be maximum, what must be the angle between them....... $^o$
Two forces $P$ and $Q$, of magnitude $2F$ and $3F$, respectively, are at an angle $\theta $ with each other. If the force $Q$ is doubled, then their resultant also gets doubled. Then, the angle $\theta $ is ....... $^o$
Two vectors $\vec A$ and $\vec B$ have equal magnitudes. The magnitude of $(\vec A + \vec B)$ is $‘n’$ times the magnitude of $(\vec A - \vec B)$. The angle between $ \vec A$ and $\vec B$ is